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Abstract. We study the behaviour of an electron sitting in a strong, randomly rotating 
magnetic field. The strength of the field is constant and its rotational movement is taken to 
be rotational Brownian motion. The decay time for the electron spin moment is found to 
be a simple fraction of the correlation time for the Brownian motion when the field is 
strong. It does not depend significantly on the field strength. 

1. Introduction 

In this paper we study the behaviour of a spin-4 particle sitting in a strong, randomly 
rotating magnetic field. We assume that the random angular motion of the field is 
rotational Brownian motion on the unit sphere. We have been motivated to study this 
problem by recent work of Pegg and Doddrell (1976a) and Pegg et a1 (1976). They 
use a different method and were lead to this problem of NMR experiments on solutions 
of paramagnetic transition-metal complexes. 

In each of these molecules there are unpaired electrons which, in the molecular 
frame, experience strong static magnetic fields which are typically about 30 kG. The 
molecule rotates randomly in the solution and so as seen from an inertial laboratory 
frame each electron appears to be acted on by a randomly rotating field of constant 
strength H. We calculate the ensemble average of the expectation value of S z ( t )  (S, is 
the electron spin) and find that (S , ( t )>  decays to zero with a decay time which does not 
significantly depend on H when H is large. More precisely, if all electron spins point 
upwards at t = 0 and initially the orientations of the molecules are uniformly dis- 
tributed relative to the laboratory frame when we find that 

(sZ(t)> = f cos wt e-& + a  e-2u' 

(equation (19)). Here hw = gH and a-1 is the correlation time for the rotational 
motion; usually w will be so large that the oscillatory term will not be detectable hence 
(SZ(t)> has a decay time of one half the correlation time of the random field. This 
confirms the general conclusion in Pegg and Doddrell (1976a) and Pegg et a1 (1976) 
that the decay time is a simple fraction of the correlation time. Since the relaxation of 
the nuclear spin is determined by the relaxation of these electrons it is possible to 
verify this result (Pegg and Doddrell 1976a, b, Pegg et a1 1976). We have not been 
able to include the effect of a static magnetic field but we present arguments in the 
final section which suggest that a static fieid would not greatly alter these results. 
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A more detailed explanation of the magnetic resonance phenomena can be found 
in Pegg and Doddrell (1976a) and Pegg et a1 (1976). Briefly however, if r is the 
correlation time for the Brownian motion and re the time constant for the electron 
spin relaxation we are here considering the case when T.<T. The usual Redfield 
theory applies only when re >> 7. For many interesting complexes (especially those 
with sharp NMR lines) re is less than r. This may occur in complexes which have very 
antisotropic g tensors or large zero field splitting constants D. If D has a typical value 
of 30 cm-' then the static field in the molecular reference frame is about 21 kG. This 
compares with a static field strength of about 30 kG in a typical spectrometer. 

In 0 2 we formulate the problem and solve it using a Fokker-Planck approach. In 
§ 3 we present an alternative approach which confirms the results of 0 2. 

2. Formulation of the problem 

In the inertial laboratory frame the magnetic field acting on the electron is Hn(t )  
where n ( t )  is a randomly rotating unit vector. If (I is the electron wavefunction then 

. a* 
lh- = 4 gHn ( t )  . U*, 

at 

R ( t )  can be written as 

n ( t )  = (sin e cos 4, sin e sin 4> cos e). 
We can also parametrise (I by three angles a, p and 8:  

( 2 )  (I= (ei(f+8)/2 cos J ~ ,  eXS+8)/2 sin J ~ ) .  

From (1) we have 

c i  = w sin 0 sin (4 - p )  
p =w(cos 8-sin e cos (4 -@)cos a) 

where hw = gH. We will measure time in units of U - ' .  

(sin a cos p, sin a sin p, cos a )  then (3) becomes 
These equations can be written in a more classical form. If a ( t )  is the unit vector 

da 
- = n ( t ) x a ( t ) .  
dt (4) 

This represents the motion of a vector a ( t )  which is fixed on a sphere which rotates 
with angular velocity n( t ) .  This problem arises in the dielectric relaxation of polar 
liquids. One recent study in which n ( t )  is a rotational Ornstein-Uhlenbeck process 
can be found in Lewis et a1 (1976). 

Since O ( t )  and 4 ( t )  are Brownian random variables, a ( t )  and p ( t )  are also random 
variables. The joint distribution of these quantities at time t is written as 
p ( a ,  p, 8,4; t ) ;  this is normalised by 
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Following Feller (1966) we can obtain the Fokker-Planck equation obeyed by p 
(details are given in the appendix): 

Here L, etc are the angular momentum operators in the variables a and /3 (e.g. 
iL, = a/ap) and A is the spherical Laplacian in the 8, # variables. Also a = wu* and 
UT = 1, T being the correlation time for the rotational Brownian motion. 

At t = 0 we assume that all electrons have spin + 4 in the laboratory frame and that 
the molecular magnetic field initially makes an angle eo with the laboratory z axis (the 
value of #Io is unimportant and for convenience is taken as 0). To find the expected 
value of S, when initially the orientations of the molecules are uniformly distributed 
we will only have to average over eo, 

So we take 

P ( ~ , P ,  e ,# ;O)=S(a )S(p )S(e -eo )S(# ) .  (7 1 
At a later time the ensemble average of S,  is 

To solve (6) we expand p in terms of the spherical harmonics Yl.m(a, P ) .  

One finds that ~ 1 . 0 ,  p1,-1 and p 1 ~  are only related to one another. Writing po for 
pl,o etc we get 

ir 
-p  + iM(8, #)p  = 1 U* A p  
at 

where p is the column vector with components p+1, PO and p-1 and 

1 
COS e z s i n  e e-;' o 

1 3 sin e e-i* 

-cos e 

i 
1 JZ sin e e'# 

When H is large, U* is small and the method of multiple time scales (Nayfeh 1973, 
Muus and Atkins 1972) is well suited to this problem. Intuitively, over a time interval 
which is much shorter than (+G1, 8 and q5 will hardly change while the angles a and p 
will precess rapidly about the axis defined by 8 and 4. So there is a fast time scale (of 
order much less than a+') and a slow time scale (of order U*). Our claim is that the 
decay of (S,(t)> is only noticeable on the slow time scale. 

We assume that for times much shorter that ui2, p can be written as 

p(6, 4, t )  = Po@, 4 ;  t, a,t)+ a&(@, #; t, cr,t)+ terms of order a:. (12) 
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We use the notation to = t and tl = a,t and so 

a 
+a*-. 

a a  
a t  ato at, 
-=- 

Finally, notice that M is Hermitian and has eigenvalues 1, 0 and -1 whose eigen- 
vectors are 

1 
sin 8 

e- ,= /  z s i n e  -1 

Writing p o =  f+el+foeo+f-e-l then from (lo), (12) and (13) we get on equating 
powers of a* 

The exact form of f*  can be found by remembering that p1 has to remain bounded 
for all t. If p1 is expanded in terms of el etc, say, PI = kel + . . . , then one has 

ak 
-+ik =g. 
ato 

Here g is the component of 4Apo- (apo/atl) parallel tae , .  Clearly if g contains a term 
proportional to e-'" then k will grow linearly with to. Hence g cannot contain terms 
involving e-"O and so we have an equation for f+. (More detailed explanations of this 
approach, which is standard in the method of multiple time scales can be found in 
Nayfeh (1973).) 

Thus 
af+ 1 . COS e af+ 
atl sin 8 sin 8 at$ 2-= Af+ -- 2 f+-21--,- 

af + 
at, 2-=Afo-2fo 
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So calculating 2(S2(t))  = (cos a) we get to first order 

where the last averages are only over 8 and q5. 

f- and PI(cos e )  e-[1c1(r+1)'21' for fo. So 

I ( I+ l ) t  2 The solutions of (17) which do not depend on q5 are Pi (cos e )  e- l' for f+ and 

and using (7) we get 

(cos a ( t ) )  = cos to e-'] sinzoo + e-", cos2 eo 
= cos ut e-& sin' eo + e-*& COS' eo 

in terms of the original variables. 
Averaging over Bo gives 

In real situations w is too rapid to be detected and the nucleus sees (on average) an 
electron whose spin decays with a correlation time 1.. If H = 30 kG then w = 
5 x 10'' rad s-' and if r for the rotational motion is about 5 X lo-" s then wr is about 
25 and so U* is 0.04 which is reasonably small. 

If a static field of 21 kG were also present the field of 30 kG seen by the electron in 
the molecular frame would now be replaced by a field which could vary from 9 to 
51 kG. These are still strong fields and the intuitive picture of rapid precession about a 
relatively slowly moving axis still suggests that the decay time should depend primarily 
on r and not on H. However it is not simple to incorporate this in calculations and we 
have not been able to do so. The method of Pegg and Doddrell(1976a) included the 
effect of a static field and our calculation confirms their results in the absence of a 
static field. 

3. An exact approach 

The decay properties of (S2(t)) can be confirmed exactly. To do this we expand P + ~ ,  
pbl and PO in terms of spherical harmonics: 

m 

1=0 
PO = a,PI(cos B)+other terms 

m 

1 - 1  
p1 = 1 6 9 :  (cos e )  e-i' +other terms 

p-l = 1 clP: (cos e) ei' +other terms. 
m 

I = 1  
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al etc depend only on t. Looking for a solution which decays as eAt we obtain the 
equations 

where bf = bl f cl and g(1) = A + $ ~ , l ( l +  1). 

very simple equation for b: : 
It is a surprising and remarkable fact that one can obtain from these equations a 

So only for special values of A can b t  be non-zero. We want a0 f 0 which requires 
that b: and b; should be non-zero. So when 1 = 1 we have 

A (A + u*)(A + 3a,) + (A + 2 ~ , )  = 0. (23) 

When U* is small the roots of this are nearly fi-u, and -2a,. This confirms the 
results of the previous section and is more generally valid for all values of U and H. 
However other correlations such as (sin a e’@> cannot be calculated by this method 
whereas the method of multiple time scale always works. 
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Appendix. Derivation of the Fokker-Planck equation for p 

Recall that a ( t )  and P ( t )  evolve according to the differential equations (12), so in an 
interval from t to t + At, P increases by @ At + O(At)* and a by ai At + O(At)’. B and 4 
have stochastic increments AB and A& Debye (1929) has shown that 

E(A0)  = O(At)’, E(AB) = $U cot B At 

E(A4)’ = U cosec’ B At  E(AB)’= U At  (‘4.1) 
E(AB A 4 )  = O(At)’. 

Here we use E for the expected value of a quantity. From a( t ) ,  P ( r ) ,  B ( t )  and 4(t)  we 
can form any function of these random variables and find its ensemble average. 
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As t grows to t + At we obtain 

Ef[a(t  + At) ,  P(t  + At),  e(t + At) ,  q5(t + At)]  

=E( f +cig At +pap af At +AB-+A4-+4 af  J f  (A0)’- a2f ae a4 ae 
a’f + i ( A 4 )  2 -+ a2f . . .). 

a4 
+AB Aq5- ae a4 

Hence we have 

a a f  * af 
at aa ap 
- Ef = E( ci- + p- + 4 cr Af) . (-4.3) 
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